Diretoria de Tecnologia e Inovação

ROBÓTICA

Módulo 2

Feedbacks + Inventário I

GOVERNADOR DO ESTADO DO PARANÁ

Carlos Massa Ratinho Júnior

SECRETÁRIO DE ESTADO DA EDUCAÇÃO

Renato Feder

DIRETOR DE TECNOLOGIA E INOVAÇÃO

Andre Gustavo Souza Garbosa

COORDENADOR DE TECNOLOGIAS EDUCACIONAIS

Marcelo Gasparin

Produção de Conteúdo

Simone Sinara de Souza

Validação de Conteúdo

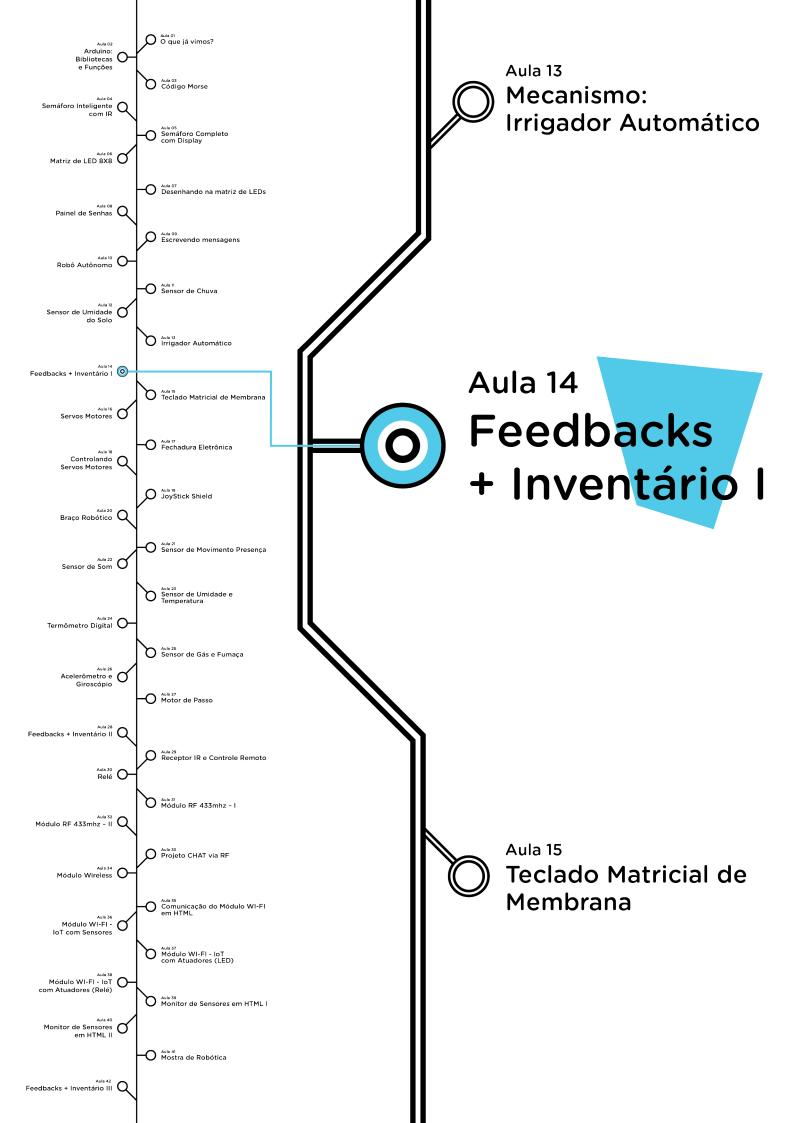
Cleiton Rosa

Revisão Textual

Adilson Carlos Batista

Projeto Gráfico e Diagramação

Edna do Rocio Becker


Ilustração

Jocelin Vianna

2021

Este trabalho está licenciado com uma Licença Creative Commons Atribuição NãoComercial - Compartilhalgual 4.0 Internacional

Sumário

Introdução	2	
Objetivos desta Aula		
Competências Previstas na BNCC		
Habilidades do Século XXI a Serem Desenvolvidas		
Roteiro da aula		
1. Contextualização	5	
2.Conteúdo	5	
3. Finalização	11	

Introdução

Nesta aula, você terá a oportunidade de recordar alguns conteúdos trabalhados nas aulas anteriores (de 01 a 13), trocar experiências com seus colegas sobre os projetos executados nessas, e realizar inventário dos componentes presentes no kit de robótica.

Objetivos desta Aula

- Relembrar os conteúdos das aulas de robótica trabalhados na primeira etapa do módulo 2;
- Realizar inventário do kit de robótica presente na escola.

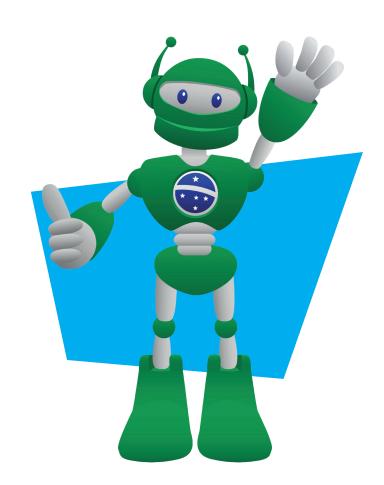
Competências Gerais Previstas na BNCC

[CG02] - Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.

[CG04] - Utilizar diferentes linguagens - verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo.

[CG05] - Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

[CG09] - Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza.


[CG10] - Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

Habilidades do Século XXI a Serem Desenvolvidas

- Pensamento crítico;
- Afinidade digital;
- Resiliência;
- Resolução de problemas;
- Colaboração;
- Comunicação.

Roteiro da Aula

1. Contextualização (15min):

Nesta primeira etapa do módulo 2, apresentamos, através de protótipos e programação, os conteúdos relacionados ao conceito e funcionamento de alguns componentes eletrônicos presentes no kit de robótica e vivenciamos desafios propostos nas aulas.

Agora, trocaremos experiências sobre como foram realizados os desafios. Quais pontos positivos podem ser destacados sobre os conteúdos trabalhados nas aulas? Dos conteúdos vivenciados, houve algum que você gostaria de destacar como o de maior grau de complexidade? Há alguma sugestão sobre a forma como foram dispostos os conteúdos que possa melhorar para as próximas turmas? Em relação aos componentes presentes no kit de robótica, você teve alguma dificuldade na utilização? Se sim, como resolveu a dificuldade?

2. Conteúdo (60min):

Findadas as considerações sobre as experiências obtidas durante às aulas propostas nesta primeira etapa do módulo 2, vamos relembrar quais foram os principais conteúdos apresentados em cada aula deste período.

Na **Aula 01**, intitulada "**O que já vimos?**", realizamos um resgate das principais temáticas abordadas nas aulas do Módulo 1, por meio das quais você teve a oportunidade de desenvolver projetos utilizando alguns dos componentes presentes no kit de robótica. Esta aula te instigou a experimentar outros componentes e aprimorar a utilização daqueles que estiveram presentes no módulo anterior com novos projetos e desafios, focando na linguagem de programação.

A **Aula 02 - Arduino: Bibliotecas e Funções** apresentou o conceito de funções aplicadas em linguagem de computação, seus elementos e as etapas para sua criação no Arduino IDE, além de modelos e aplicabilidade das bibliotecas presentes nesse software.

Na **Aula 03 - Código Morse**, destacamos um meio de comunicação muito utilizado na primeira metade do século XX, durante a 1º e 2º Guerras Mundiais, para transmitir informações secretas na forma de códigos através do aparelho denominado telégrafo. Na parte prática desta aula, você construiu um protótipo de telégrafo sendo desafiado a emitir uma mensagem secreta a seus colegas.

Com as Aulas O4 - Semáforo Inteligente com IR e O5 - Semáforo Completo com Display, programamos o funcionamento de dois dispositivos de sinalização, nos quais, o primeiro identifica a presença do pedestre, acionando o fechamento do semáforo de carros e, o segundo, informa o tempo exato que o pedestre possui para atravessar com segurança.

Na **Aula 06 - Matriz de LED 8x8**, apresentamos, por exibição de caracteres numéricos, o funcionamento dos painéis luminosos, muito utilizados em ônibus ou filas de supermercados.

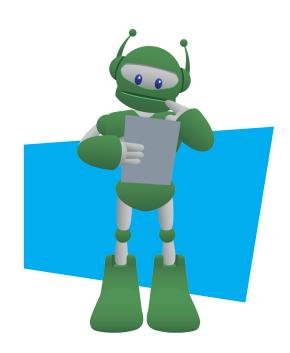
A **Aula 07 - Desenhando na matriz de LED**, foram retomados os conceitos sobre painéis de LED e a criação de imagens neste dispositivo usando caracteres.

Na **Aula 08 - Painel de Senhas**, simulamos um painel de senha simples, o qual exibe, em um display, o número de senha para o próximo atendimento às pessoas presentes em um estabelecimento.

Com a **Aula 9 - Escrevendo Mensagens**, tivemos a oportunidade de enviar mensagens, via porta serial do Arduino IDE, para ser exibida no Display LCD.

Na **Aula 10 - Robô Ultrassônico**, utilizamos o sensor de distância ultrassônico para programar um robô capaz de desviar de obstáculos, presentes a uma distância menor ou igual a 40 cm, de forma autônoma.

THE THE TENTAL PROPERTY AND AUGUST 1 TO AU


A **Aula 11 - Sensor de chuva**, possibilitou a criação de um protótipo que simula o monitoramento da precipitação de chuva, a partir do qual é possível criar sistemas de acionamento automático, como limpador de para-brisa, fechamento de janelas ou tetos solares.

Na **Aula 12 - Sensor de Umidade do Solo**, desenvolvemos um sistema que monitora a quantidade de água presente no solo. Por meio deste monitoramento é possível detectar se há umidade suficiente para que as plantas cresçam de forma saudável e de boa qualidade.

Com a **Aula 13 - Irrigador Automático**, montamos um protótipo, empregando, novamente, o sensor de umidade do solo, para simular os irrigadores utilizados por agricultores em períodos de estiagem, que fornecem água ao solo em quantidade suficiente e necessária ao desenvolvimento das plantas.

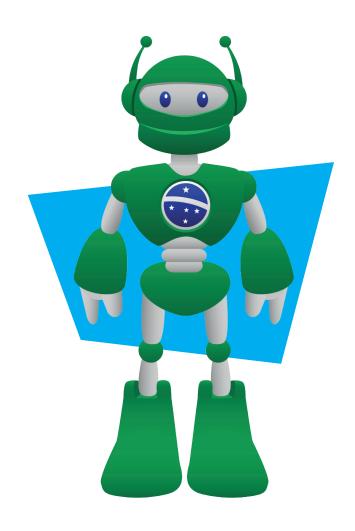
Concluída a retomada dos principais conteúdos estudados nesta primeira etapa do módulo 2, é chegado o momento de realizar o inventário dos componentes eletrônicos presentes no kit de robótica utilizado nas aulas.

Para auxiliá-los, disponibilizamos, no quadro 1, a listagem dos elementos e a quantidade destes elementos presentes nesse kit.

Quadro 1 - Componentes do kit de robótica

UNIDADE	NOME
01	Acelerômetro e Giroscópio 3 Eixos 6 DOF MPU-6050
01	Arduino Uno R3
01	Barra Gráfica de LED 10 Segmentos
01	Buzzer Passivo 5V
01	Cabo USB 2.0
10	Capacitor Disco Cerâmico 100nF x 50V
10	Capacitor Disco Cerâmico 10nF x 5V
05	Chave Táctil 6x6x5mm 4 Terminais
01	Clip de Bateria 9V + Plug P4 para Arduino
01	Controle Remoto IR
10	Diodo Retificador 1N4007
02	Display de 7 Segmentos com 1 Dígito (Cátodo Comum)
01	Display LCD 16x2 com Pinos Soldados
01	Fonte DC Chaveada 9V 1A Plug P4
01	Joystick Shield DIY para Arduino
25	Jumper Fêmea-Fêmea
50	Jumper Macho-Macho
01	Kit Braço Robótico em MDF
01	Kit Chassi 2WD Robô para Arduino
10	LED 5mm Alto Brilho branco

UNIDADE	NOME
10	LED 5mm Alto Brilho acende azul
10	LED 5mm Alto Brilho acende amarelo
10	LED 5mm Alto Brilho acende verde
10	LED 5mm Alto Brilho acende vermelho
05	LED 5mm RGB Alto Brilho
03	Micro Servo 9g SG90
03	Micro Servo MG90S
01	Módulo Matriz de LED 8x8 com MAX7219
01	Módulo Mini Sensor de Movimento Presença PIR
01	Módulo Receptor Infravermelho IR KY-022
01	Módulo Relé 5V 2 Canais
01	Módulo RF Transmissor + Receptor 433mhz
01	Módulo Sensor de Chuva
01	Módulo Sensor de Gás e Fumaça MQ-2
02	Módulo Sensor de Obstáculo Infravermelho IR
01	Módulo Sensor de Umidade do Solo Higrômetro
01	Módulo Wireless ESP8266 ESP-01
01	Motor de Passo + Módulo de Controle (Driver ULN2003)
01	Motor Shield L293D Driver Ponte H para Arduino Uno R3
01	Placa Sensor Shield V5.0


UNIDADE	NOME
01	Placa Protoboard 830 pontos
01	Potenciômetro Linear $10 \text{K}\Omega$
20	Resistores 100 Ω
20	Resistores 100K Ω
20	Resistores 10K Ω
20	Resistores 1K Ω
20	Resistores 1M Ω
20	Resistores 220 Ω
20	Resistores 2K2Ω
20	Resistores 330 Ω
20	Resistores 3K3 Ω
20	Resistores 470 Ω
20	Resistores 4K7Ω
20	Resistores 680Ω
02	Sensor de Distância Ultrassônico HC-SR04
01	Sensor de Temperatura LM35
01	Sensor de Umidade e Temperatura DHT11
01	Teclado Matricial de Membrana - 16 Teclas

3. Finalização (15min):

Durante a conferência dos elementos presentes no kit de robótica foi identificado a ausência ou diminuição de algum componente eletrônico? Caso isso tenha ocorrido, anote em uma folha de papel o(s) nome(s) do(s) componente(s) e a quantidade atual deste(s) presente(s) no kit para eventual reposição.

Organize os componentes eletrônicos presentes no kit de robótica e a folha de anotações (se for o caso) na caixa plástica que o acompanha para ser utilizado pelas próximas turmas deste módulo.

